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Abstract

We investigate the solutions of vector refinement equations of the form

o= a@eM  —u),

o€z’

where the vector of functions = (¢1, .. ., <p,)T isin(Lp(R%))", 1< p<oo, a=: (a(®)),ezs is afinitely
supported sequence of r matrices called the refinement mask, &M@ ans x s integer matrix such that

lim, 0o M~" = 0. Associated with the maskandM is a linear operatop,, defined on(L,(R*))" by

Q¥ = Zﬂezsa(ﬁ)l//(M-—ﬁ). The iteration schem@)/}y),—1 2 ... is called acascade algorithm (see [D.R.

Chen, R.Q. Jia, S.D. Riemenschneider, Convergence of vector subdivision schemes in Sobolev spaces, Appl.
Comput. Harmon. Anal. 12 (2002) 128-149; B. Han, The initial functions in a cascade algorithm, in: D.X.
Zhou (Ed.), Proceeding of International Conference of Computational Harmonic Analysis in Hong Kong,
2002; B. Han, R.Q. Jia, Multivariate refinement equations and convergence of subdivision schemes, SIAM
J. Math. Anal. 29 (1998) 1177-1199; R.Q. Jia, Subdivision schemés, iapaces, Adv. Comput. Math.

3 (1995) 309-341; R.Q. Jia, S.D. Riemenschneider, D.X. Zhou, Vector subdivision schemes and multiple
wavelets, Math. Comp. 67 (1998) 1533-1363; S. Li, Characterization of smoothness of multivariate refinable
functions and convergence of cascade algorithms associated with nonhomogeneous refinement equations
Adv. Comput. Math. 20 (2004) 311-331; Q. Sun, Convergence and boundedness of cascade algorithm in
Besov space and Triebel-Lizorkin space |, Adv. Math. (China) 29 (2000) 507-526]). Cascade algorithm
is an important issue to wavelets analysis and computer graphics. Main results of this paper are related
to the convergence and convergence rates of vector cascade algorithpy(i’))" (1< p <oo). We give

some characterizations on convergence of cascade algorithm and also give estimates on convergence rate
of this cascade algorithm witkl being isotropic dilation matrix. It is well known that smoothness is a very
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important property of a multiple refinable function. A characterizatior pf1< p <oo) smoothness of
multiple refinable functions is also presented whién= g1, , wherel;x is thes x s identity matrix,

andg > 2 is an integer. In particular, the smoothness results given in [R.Q. Jia, S.D. Riemenschneider, D.X.
Zhou, Smoothness of multiple refinable functions and multiple wavelets, SIAM J. Matrix Anal. Appl. 21
(1999) 1-28] is a special case of this paper.

© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A vector refinement equation is a functional equation of the form

o= a@oM-—x), xelR, (1.1)
oeZ’
whereg = (¢, ..., ¢,)7 isin (Lp(R%))", 1< p<oo, ais afinitely supported refinement mask

such that eacl(«) is anr x r (complex) matrix andM is ans x s integer matrix such that
lim,_. M~ = 0. Eq. (1.1) is called a homogeneous vector refinement equation. The solutions
of Egs. (1.1) are called multiple refinable functions. Itis well known that refinement equations play
an important role in wavelet analysis and computer graphics (see [1,4,5,7-9,12,17,19-23,25,26]).
Mostusefulwaveletsin applications are generated from refinable functions. The cascade algorithm
and smoothness of refinable function are two important issues in wavelets analysis and computer
graphics. For example, cascade algorithm can be used to characterize the existence of solution
and orthogonality of shifts of solution of Eq. (1.1) and also have strong impact on applications
of wavelet to computer graphics. Smooth wavelets are needed in image processing and signal
processing. The approximation and smoothness properties of wavelets are determined by the
corresponding refinable functions. Therefore, it is very important to investigate the convergence
of cascade algorithm and smoothness of refinable functions.

Before proceeding, we introduce some notations. RopXK oo, by (L,(R*))"” we denote the

linear space of all vector§ = (f1, ..., f,)! such thaﬂ|f||p < 00, Where
- 1/p
1= [ 1nrax) o a<p <
j=1

and|| f | is the essential supremum of max; < - | f;| onR*. When 1< p<oo, | - ||, is @ norm
and, equipped with this normiL ,(R*))" is a Banach space.
The Fourier transform of a vector of functions(ih1 (R*))” is defined by

f©:= /R ey, Ce R, (1.2)

wherex - ¢ denotes the inner produce of two vecte@sndé in R°.
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The study of smoothness ofis related to properties of shift-invariant spaces. Supgose
(¢1.....¢,)T is anr x 1 vector of compactly supported functions (b, (R*))" (1< p <00).
We useS(¢) to denote the shift-invariant space generated frgmnwhich is the linear space of
functions of the form

D) bie;(—w.

Jj=1 aeZ*®

wherebs, ..., b, € £(Z°), the linear space of all sequences £n The shifts of compactly
supported functiong,, ..., ¢, € L,(R*)(1< p <oco) are said to bd. ,-stable if there exist two
positive constant€’; andC> such that, for arbitrarys, ..., b, € £,(Z°),

r r r
C1Y bl <D Y bjwe;¢ —a)| <C2> b,
j=1 j=1

j=1 aecZ*® »

wheret ,(Z*) denotes the linear space of all sequeader which||c|, < oo, the{,-norm ofc
is defined by

1/p

lellp = Y le@”| . 1<p <oo,

oaeZ®

and||c||« is the supremum gt| onZ?. Clearly,||-|| , is anormfor I< p < oo. Itwas proved iff16]
that the shifts ofp,, ..., @, areL ,-stable if and only if, for any. € R’, the sequence®; (¢ +
2Bm)) pezs. j =1, ..., rarelinearindependent. In[10], Jia obtained a similar characterization for
L ,-stability of the shifts of a finite number of compactly supported distributions whenpO< 1.

We denote the set of all positive integers iy and letNg := N U {0}. A multi-index is an
s-tupleu = (uy, ..., u;) € Ng. The length ofuis |u| := pg + - - - + ug. The partial derivative of
a differentiable functior with respect to th¢th coordinate is denoted b ; f, j = 1,..., s, and
for u = (g, ..., 1) € N§, D* is the partial differential operatad;* - - - D5*. For 1< p < oo
and an integet >0, we useWLf(RS) to denote the Sobolev space that consists of all distributions
fsuch thatD* f e L,(R®) for all multi-indicesy, with |u| <k. The Sobolev norm is defined by

Iy = 3 [P 1],

Il <k

With above norm,W},f(R") becomes a Banach space.
We use(Wl’j (R*))" to denote the space that consists of all vector of functfoes(f1, ..., f)7
such thatf; e W)’,f([RES) for j =1,2,...,r. The norm or(Wﬁ([RQS))’ is denoted by

1/p

.
— P
Il = | 213l e
Jj=1

If 9 = (¢1,..., )" is a compactly supported solution of (1.1) GW)’;([R{S))’ for 1< p< 0.
Taking the Fourier transform of both sides of (1.1), we obtain

P& = HMNHHoMTH™Le, ¢eR, (1.3)
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whereMT denotes the transpose &f, and

1

- —io-¢ s
H() = ldetM|g§a(a)e , EeR. (1.4)

Evidently, H (&) is 2r-periodic. If ¢(0) # 0, thenp(0) is an eigenvector of the matrik (0)
corresponding to eigenvalue 1. It was also proveflljrthat if ¢ satisfiesp(0) # 0 and span
{p(2np) : p € 2°} = C", then 1 is a simple eigenvalue &f(0) and other eigenvalues &f (0)
are less thaxip(M))~* in modulus, where (M) denote the spectral radius of dilation matix
These conditions are called Eigenvalue Condition. Under above conditioHg§@nrefinement
equation (1.1) has a unique compactly supported distributional solatignto a constant factor.
Let ¢ be a solution of vector refinement equation (1.1QW‘£§([R§“))’ for 1< p < o0, if the shifts
of ¢ is stable, therH (0) satisfies Eigenvalue condition.

In this paper we assume thét(0) satisfies Eigenvalue condition. Thus, there is a nonsingular
matrixV so thatV H (0)V 1 has the form

<é /‘3) (15)

whereA is an(r — 1) x (r — 1) matrix that satisfies ligi, o, A" = 0. Defineb(x) = Va(x)V 1,
theny = V ¢ satisfies the refinement equation

Y= byM- -2, xeR, (1.6)
aeZ’®

whereg is a solution of (1.1). Therefore, we may assume that tke matrix H (0) has the form
(1.5), without losing anything.

Forj =1,2,...,r, we use ¢ to denote thgth column of ther x r identity matrix. It is easily
seen that
eTHO) =el. (1.7)

In order to study ,-solutions of the refinement equation (1.1) we shall employ the following
iteration scheme. Le@, be the linear operator ofL ,(R*))" (1< p < oo) given by

Quf =Y a@f(M-—2),  fe(Ly(R) (1<p<o0). (1.8)
acZ®
Let ¢y be anr x 1 initial vector of functions in(L ,(R*))" (1< p<o0). Forn = 1,2,..., let

¢, = Q%¢q. It {@,}s=1,2 ... converges to somein the (L ,(R*))" space for K p < oo, then the
limit ¢ is a solution of (1.1) in(L ,(R*))" (1< p <00). Iterating (1.8)ntimes gives

Qlpo=Y_ an(@)po(M" - —w), n=12, ..., (1.9)
oaeZ®
where forn = 1,2, ..., a1 = a anda, is defined by following iterative relations:
an(@) = Y ap-1(Palc— MP), aeZ'. (1.10)
pez

The iteration schemé¢Q” ¢g},=12.. is called cascade algorithm. The cascade algorithms
play an important role in computer graphics and wavelet analysis. Therefore, there are many
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papers to be devoted to studying convergence of cascade algorithms mentioned above (see
[1,5,6,9,12,17,27,28]). Let be the unique compactly supported distributional solution of refine-
ment equation (1.1) subject to the conditk{rﬁ)(O) = 1. Such a solution is called the normalized
solution of refinement equation (1.1). It was proved in [21] that if,lim. [| Q" o — ¢, = 0,

thengpy must satisfy Strang-Fix conditions of order 1. A typical choice of initial function vector

is given by

N
q)ozelTnx(xj), x = (x1,...,x5) € R’
j=1

where y(t) is the characteristic function of the intervg0D, 1). We will prove that if
lim,— o Q% po— ¢ll, = O for this initial function vectorpy, then lim,_. o [| 0%y — || , = O for
any vector of compactly supported functiofisn (L ,(R*))" (1< p <oo) satisfying Strang-Fix
conditions of order 1. Reader is referred1d] for some related discussions on Strang-Fix condi-
tions. However, the sequent@?’ ¢q},=1,2... may diverge for this initial function vector, even if
the normalized solutiom lies in (L ,(R*))" (1< p <o0). Thus, itis necessary to find appropriate
conditions on initial function vectap, such that

H n _ —
nleOO 1000 — @ll, =0.

Whenr = 1, Jia[12] obtained a characterization on initial vector of functignsto ensure
lim,— o0 10299 — @ll, = 0. Whenr > 1, M = 2 and 1< p < oo, Sun also established a
similar characterization in [29] with a different method. Let us simply review Jia’s results.

Theorem A (Jia[12]). Let ¢ be the normalized solution of the refinement equatiof) with
r=1andinL,(R%) (1< p<oo). Lety be a compactly supported functionin, (R*) satisfying
Strang-Fix conditions of ordet. If K(¢) C K (), then

lim 04 — o], =0

wherek (¢) = {c(@) € €(Z°); Y ez c(0) (- — x) = 0}.

We point out that the shifts ap is linear independent iK (¢) = {0}. Jia also established es-
timates for the convergence rate of cascade algorithm with dilation mdttdeing isotropic.
A dilation matrix M is isotropic if M is similar to a diagonal matrixliag(ss, ..., o) with
loi] = =lag].

Theorem B (Jia[12]). Let ¢ be the normalized solution of the refinement equafiof) with

r = 1 and dilation matrix M being isotropic. Suppogee Lip(v, L,(R*)), wherev > 0 and
1< p<oo.Suppose kisaninteger suchthatl < v<k.Lety be acompactly supported function
in L ,(R*) satisfying Strang-Fix conditions of order kKf(¢) € K (i), andif D*$(0) = D”fb(O)
for all |u| < k, then there exists a positive constant C such that

lomw — o, <Con™)" vneN.
We remark that a result similar to TheoreBnwas also established if29] for the case

r>1M = 2and 1< p < oo. In particular, TheorenB confirms a conjecture of Ron on
convergence of cascade algorithms (see [26]).
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In Section2, we will investigate the convergence and convergence rates of cascade algorithm
associated with vector refinement equations (1.4Lin(R*))" (1< p < oo). We will extend above
theorems to vector refinement equation (1.1). This goal will be achieved by employing some
approaches used in [1,13,12,14,21].

We use the generalized Lipschitz space to measure smoothness of a given functioa.fFor
the difference operatdv, is defined by

Vif=f—fC=4.
The difference operatdv; on ¢qo(Z°) denoted by
Vja:=a—a(—ej).
The modulus of continuity of a functidiin L ,(R*)(1< p <o) is defined by

o(f,h)p = sup [IV,fllp, h=0.
2 <h

For 1< p<oo and 0 < v<1, the Lipschitz space Lip(v, J(R*)) consists of those functions
f € L,(R®) for which

o(f, h),<Ch" Yh >0,

whereC is a positive constant independentofWhenv > 1, we writev = [ + n, wherel is an
integer and O< 1 < 1. The Lipschitz space Lip(v, J(R*)) consists of those functionts € L, (R%)
for which D* f € Lip(n, L ,(R%)) for all multi-indicesy with |u| = /.

We use(Lip(v, L,(R*)))" to denote the linear space of all vectgfs= (f1, ..., )T such
that f1, ..., fr € Lip(v, L,(R*)). Letk be a positive integer. Thth modulus of smoothness of
f e L,(R)(1< p<oo) is defined by

wk(f.h)p = sup V& fll,, h=0.
[AI<h

Forv > 0, letk be an integer greater thanThe generalized Lipschitz space Lip*(v,{R"))
consists of those functions e L, (R*) for which

ok (f,h)p,<Ch" Yh >0,

whereC is a positive constant independentiof

By (Lip*(v, L,(R%)))" we denote the linear space of all vectgfs= (f, ..., )T such
that f1, ..., f, € Lip*(v, L,(R®)). The optimal smoothness of a vectfre (L,(R*))" in the
L ,-norm is described by its critical exponent( f) defined by

vp(f) ==sup{v: f e (Lip*(v, L,(R*)))"}.

Our another concern is the, smoothness of solution of refinement equation (1.1) With=
qls«s, Whereg >2 is an integer. When = 1 andM = 2, Jia et al. [18] gave a characterization
of smoothness of multiple refinable function(ih, (R))" (1< p <o0). Whenr = 1 and dilation
matrix is isotropic, Jia [11] obtained a characterizatior.efsmoothness of multi-variate refin-
able function. In [22], author obtained a similar characterizatioh pmoothness of multiple
refinable functions witiM being isotropic matrix. In Section 3, we will give a characterization of
L, (1< p<oo) smoothness of solutions of vector refinement equation (1.1) Mitk g I, In
particular, the smoothness results given in [18] are the special case of this paper.
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In Section3, we will establish lower bounds of,(¢), wheng is aL , solution of Eq. (1.1) for
1< p<oo. We will also show that under some appropriate conditiong otine lower bound is
optimal.

2. Convergence rates of cascade algorithm iL , (R¥))" (1< p<o0)

In this section we investigate the convergence and convergence rates of cascade algorithm asso
ciated with refinement equation (1.1) by using of some ideas of [1,13,12,14,21}o&t))" <4
and(£(Z*))"*? denote the linear spaces of all finitely supported sequences afmatrices and
all sequences of x d matrices onZ*, respectively. We introduce a bilinear form on a pair of
linear space&fo(Z°%))" 1 and(¢(Z*))1*" as follows:

<u,v>i= Z u(—a)v(e), ue @ZNY>, ve (Loz*)) L.

acZ®
Itis known that(¢(Z*))1*" is the algebraic dual ao(Z*))"*! with respect to this bilinear form.

If <u,v >=0,thenuandv are called orthogonal and we writeL v. The annihilator of a
linear subspac¥ of (¢o(Z*))"*1 is defined by

vto= {u e UZWY: <u,v>=0 Vue v}.
We need the following Lemm2.1 which was established in [14].

Lemma 2.1. If Vis a linear subspace a¥o(Z*))" %1, thenv = (V1)L

Letp = (¢1,...,¢,)T be anr x 1 vector of compactly supported functions B#, we use
K (¢) to denote the linear space of all sequeanee (¢, ..., ¢,) onZ* such that
r
2.2 ¢i@p;¢—0) =0
j=loaecz*

We say that the shifts af4, ..., ¢, are linear independent K (¢) = {0}. It was proved ir{16]
that the shifts ofp4, ..., ¢, are linear independent if and only if for agye C”,

span{p(E+2np): pe '} =C".

Hence, linear independent implies stability.
The following lemma extends Lemn2al of [12] to the case > 1 which is also of independent
interest.

Lemma 2.2. Let ¢ andy be vectors of compactly supported functiongin,(R*))" (1< p <
00). Suppos& (@) € K (). Then there exists a positive constant C such that

Yo b@y—w| <C Y b —n)|  Vbe 2z ).

s A
oaeZ » oaeZ »
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Proof. Note thatS(¢) denotes the shift-invariant space generateg biyn other words,

S(p) = ZZuj(oc)(ij—oc):ul,...,u,eZ(Z‘Y) .

j=1 ae?®

Since ¢y, ..., @, are compactly supported. The restriction $ifp) to the cube[O, 1} is fi-

nite dimensional. Thus, we can find functiogs, ..., ¢; € L,(R*)(1<p<oo) with support
in [0, 1F such thatdqjo.1p, - - -, ¢4li0,1r form a basis forS(¢)lo,1y- It follows that, forg;,

j=1,2,...,r, there exist sequences, cj2, ..., ¢jq € £o(Z°) such that

d
;= Z Z cji(@) (- — o).

=1 geZ*

Forb € (€,(Z*))**", we have

D b —a) =Y (b —7), (2.1)
o’ yeZ*
wherec = (Cj])1<j<r l<i<q € oz, ¢ = (¢q. ..., ., andc * b denotes the convo-

lution of b andc, given by

brc@ =Y bla—Prep.
ﬁEZV

Since the function®4, ..., ¢ are supported ifi0, 1}° and are linearly independent, we know
that there exists a constafii such that

Y b@e(—0)| =Cilbxal,. 1=1.2....4d. (2.2)

s
aeZ »

wherec; € (£o(Z*))" 1 is thelth column ofc.

Let Vi, be the linear span of (multi-integer) shifts of, ..., cq. It follows from (2.1) that
b € K(¢) if and only if b is orthogonal to shifts otq, ..., cq, i.€., < b,c;(- — p) >= 0,
1=1,2,...,d,YB e Z°. Therefore, we know thak (¢) = V((,L.

Similarly, we can find linear independent functioffs . . ., y,, in L ,(R*) supported if0, 1}°
such that

U= hjw (- — o, (2.3)

=1 ge7*

wherehj;, € €o(Z%), for j = 1,2,...,r,1 = 1,2,...,n. Denoteh; = (h, ha, ..., hy)' e
(Lo(Z*)™* 1,1 =1,2,...,n. ltis easy to check that; L. K () forl =1,2,..., n. It follows
from K (p) € K(y) thath; L K(¢p) = V((,L. By using of Lemma2.1, we obtain; € V,,, for
1=1,2,...,n. Therefore, each; can be expressed as

d

h[ ZZEj]*Cj,

j=1
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wheree;; € £9(Z2°), j =1,2,...,d,1=1,2,...,n.Since

D b@Y—ay =Y bR —7),

oeZ® yez’

whereh = (hj)1<j<ri<i<n € (Lo(Z°))"*", andh, is thelth column ofk. Therefore, there
exists a constant, such that

n
Dby —a)| <C2 Y lbxhil,. (2.4)
I=y/ad » =1
Note thath * h; = Z‘;zl eji % (b xcj). Hence

d

d

lesdill, = > ejxbxcy| < llejlallb*cil,, [=1.2.....n. (2.5)

j=1 j=1
p

We prove this lemma by using of (2.2), (2.4) and (2.5Y]

After submitting this paper, | received a preprint of Q. Sun entitled “Linear dependence of the
shifts of vector-valued compactly supported distributions”, in which Lemma 2.2 is proved with a
different method (see [30]).

We are in a position to give characterizations of convergence of cascade algoritiimeh))”

(1< p< ).

Theorem 2.3. Letgp = (¢4, ..., ¢,) be the normalized solution of the refinement equétlot)

in (L,(R*)" (1< p<oo). If Y is a vector of compactly supported functions satisfying Strang-Fix
conditions of orded, and if K (¢) C K (), then

|QZ!7D - ¢||/) = 0

lim |
n— o0
In the casep = oo, if both ¢ andy are continuousthen 0y converges ta uniformly.

Proof of Theorem 2.3. We only consider the case<lp < oo. Since the proof ofp = oo is
similar. We pickg;, j = 1,2,...,r to be compactly supported functionsin, (R*) such that
e g1 dx =1 and [ gjdx =0.j =2....r, where% + % = 1. Let P, be the
guasi-projection operator given by

Pofi=7 Y <fgit—0)>¢;(—a), [eL,®R),

aeZf j=1

where< f, g;(- — o > denotes the inner product of two functidnsndg; (- — ).

Sinceg is the normalized solution of Eq. (1.1) @ ,(R*))" (1< p < 00), it was proved in [21]
thatp must satisfy Strang-Fix conditions of order 1 which implyﬂ*{ab(O) =1 andelT@(Znﬁ) =
0, for all p € 7°\{0}. By Poisson summation formula, one can easily prove that these conditions
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are equivalent to the conditiog{ Y wezs @(- — o) = 1. Therefore, quasi-projection operators
P, reproduces constants, i.&,1 = 1. Similarly, let P, be the quasi-projection operator given

by

Pufi=3 Y <figit—0)>y;(—a), feLyR).

aeZ’ j=1

Sincey also satisfy Strang-Fix conditions of order 1, then quasi-projection opePgtaiso
reproduces constants, i.&,1 = 1. Consequently, fof € L,(R%), 1< p<oo, we have (see

[13])
,
H n . n R X n R _
Jim =" Y < fim"gi(M" ) > 9;(M" - )| =0
acZ® j=1
p
and
.
im | f— DN < fomigi(M" - —a) > (M- —)| =0.
ac?® j=1
p
Forn=1,2,..., letc, be the sequence ofx r matrices given by

en(@) := (< ;. m" g (M" - —a) >)1<j,1<r’ we 2.

It follows from (2.6) and (2.7) that

. " _
Jim o — > o - —a)| =0,
acZ®
P
and
nli—>moo ¢ — Z C”(OC)W(Mn -—o)|| =0.
aeZ® »

Sinceg is the normalized solution of Eq. (1.1), we have

o= a@eM" - ),

oaeZ?®

where the sequeneg (n = 1,2, ...) are given in (1.10).
It follows that

D (en(@) — ap(@))p(M" - —2)| =0.

oaeZ?®

lim
n—>0oo

p

(2.6)

2.7)

(2.8)

(2.9)
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SinceK (¢) € K (), Lemma 2.2 tells us that there exists a positive consTantiependent of
such that

<C | Y (en(@ — an(2)p(M" - —)

oaeZ®

> (en(@) = an())p(M" - —)

oaeZ®

=C Y c@pM" - —20) —¢

aeZ®

But

HQZ% o (P”p = Z an(OY(M" - —a) — @

aeZ®

p

N

D an@yM" - —0) = Y cu()Y(M" - —2)

aeZ® aeZ®

+{ D cnlpM” - —a) — ¢

aeZ?®

Y @M —a) — ¢

oaeZ?®

<C Z Cn(“)q’(Mn s =) — ® +

oaeZ®

p p

It follows from (2.8) and (2.9) that lifL, o | Q%Y — q)||p =0, as desired. O

Remark 2.4. We remark that if the normalized solutignof refinement equation (1.1) lies in
(L,(R*))" (1< p<oo), then it was proved in [21] thap satisfies Strang-Fix conditions of or-
der 1, i.e.e] $(0) = 1, ande] ¢(2n) = 0 for all € Z*\{0}. It was also proved in [21] that
if Y is a vector of compactly supported functions(ib, (R*))" (1< p < 00), such that cascade
algorithm with initial vector of functionj converges tap in (L,(R%))" (1< p<o0), theny
satisfies Strang-Fix conditions of order 1. Therefore, the assumptiaf nsatisfy Strang-
Fix conditions of order 1 in Theorem 2.3 is necessary. It follows from Theorem 2.3 that if
the shifts ofeq, ..., ¢, are linearly independent, theki(p) = {0} which implies that cas-
cade algorithmQ?y converges top in (L,(R%))" (1< p<oo) for any vector of compactly
supported functiongy € (L,(R%))" (1< p<oo) satisfying Strang-Fix conditions of order 1.
In fact, we can prove that if the shifts ofy, ..., ¢, are stable, then cascade algoritt@fjy
converges tap in (L,(R*))(1< p<oo) for any vector of compactly supported functiopse
(L, (R*))" (1< p < oo) satisfying Strang-Fix conditions of order 1.

Theorem 2.5. Supposep, = (@7 0. ~--,€0r,o)T is the vector of compactly supported func-
tions in (L,(R*))" for 1< p<oo, ¢q satisfies Strang-Fix conditions of ordér If the shifts
of ¢10,..., ¢, are stable. Letp be the normalized solution of refinement equatfri) in

(L ,(R*))" for 1< p < oo such that

. . _
HILmOOIIQawo oll, =0,
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then for any vector of compactly supported functignsn (L ,(R*))" (1< p <oo) satisfying
Strang-Fix conditions of ordet, we have

o
Jim 104 — gl = 0.

In particular, if the normalized solution = (¢4, ..., ¢,)T of refinement equatio(t.1) lies

in (L,(R%))" for 1< p<oo and the shifts obpq, ..., ¢, are stablethen the cascade algorithm
Q% converges tap in (L, (R*))" (1< p<oo) for any vector of compactly supported functions
Y e (L,(R)) (1< p <oo) satisfying Strang-Fix conditions of ordér

Proof of Theorem 2.5. The proof follows the lines of the proof of Theorem 2.3. We pick a vector
of compactly supported functions {iL. , (R*))" satisfying Strang-Fix conditions of order 1. Let
Py, and Py, be the quasi-projection operators denoted as in the proof of Theorem 2.3 ¢ince
andy satisfy Strang-Fix conditions of order 1. It follows from the proof of Theorem 2.3 that

nli—>moo ¢ - Z C”(O()(pO(Mn - —0) =0

S
aeZ »

and

lim o — > ey (M- —a0)| =0,

A
oaeZ P

where(c, (2)) is the sequence af x r matrix as in the proof of Theore13. Since the shifts of
®1,0 ---» ¢y are stable, there exists a constapt> 0 such that

lan = call , <C2m™? |3~ (cn(@) — an () po(M" - —0) |

aeZ® »
wherea,, is defined by (1.10). Furthermore,

Q= D (M”20 = 3 (@n(@) = ca@W(M" - —2).

oaeZ?® aeZ®

Hence there exists a constary > 0 such that

Oy — > ca(Y(M" - )| <Cam™/7 Jlay — cll -

s
aeZ »

Combining the above estimate, we see that

Qi = > cn(YM" - —0) | <C2C3 | Y (an(@) = ca(2))po(M" - —a0)

S s
oaeZ » oaeZ »
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Therefore, we have

| oty —ol,
<lo= D ca@yM" - —0)| + | Qnh = > cu()(M" - —)
oaeZ?® P oaeZ® p

<lo— D calyp(M" - —w)| + C2C3 | D (an(e) = ca(2))po(M" - —21)
o’ o’
p p
<lo= D" cn@yM" - —a)| +CaC3 |0 — > cn(@)po(M" - —a)
oeZ’ » oeZ® »

+CaC3| 9 — Y an(@)po(M" - —2)
oeZ® »

It follows from the above discussions, we complete the proof of The@:ém O

Remark 2.6. We point out that Theorer®.5 appeared in [6] for = 1, in [27]fors = 1,r =1
and 1< p < oo andin[17] fors = 1 andM = 2.

To obtain the estimates on convergence rate of cascade algorigigiR*))” (1< p < oo) with
M being isotropic, we need some notations and some preliminary results. \giiscisotropic,
thenM is similar to a diagonal matrigiag(a1, . .., o) with |o1| = --- = |as| = mY/*, where
m = |detM|. Therefore, there exists an invertiBle< s matrix A = (4;1)1< j1<s Such that

AMA™! = diag(ay, . . ., oy).

Forj=1,2,...,5s,letq; be the linear polynomial given by
)
qj(x)zz%-lxl, X =(x1,...,x5) € R’,
=1

We usey; (D) to denote the differential operatpr;)_; 4;;D;. For multi-indexu = (uy, ..., p) €
N, defineg, = qfl(x) gy ()P,

The factorial of a multi-indext = (ug, ..., uy) € Ny is defined to bed! := puy!---p!. Let
= (q,---, ) andv = (v1,...,vs) be two multi-indexes. Them<u meansy; <u; for
j=1,2,...,s.Byv < upwe mearv< pandv # u. For v< u, define

()
v =)t

Let B, (|ul <k — 1) be the 1x r vectors given by the recursive relation

By= > (‘\f) "' By_vqy(—i DYH(0), (2.10)

V<[
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wheres# " = ¢{*" ... ¢{*"", By = e] . This equation can be rewritten as

B, (I, — d"H(0)) = Z (ﬁ) """ By_yqy(=iD)H(0),
O£V < u
wherel, denotes the x r identity matrix. Since matri¥{ (0) satisfies Eigenvalue condition, then

the matrixI, — ¢*H (0) is invertible for any multi-indexu with 0 < |u| <k — 1. Therefore, the
vectorB,,(0 < |u| <k—1)are unique determined by (2.10). Ror<k—1andf € (Wx1(R*))",

deﬁneTuf(f) = ZV<.U <'[:) B,uqu\)(—l'D)fA(f)-
With above notations, we introduce the following lemmas which were proved in [1].

Lemma 2.7(Chen et al[1]). Supposepq,..., ¢, are the compactly supported functions in
WE=L(R®) for 1< p<oo such that the: x 1 vectorg = (¢1....,¢,)" is a normalized so-
lution of the refinement equatid¢.1) with M being isotropic. LeB,, be denoted b{2.10).Then
Tup(0) =0forall 0 < |u|<k —1andT,p(2np) = Oforall § € Z°\{0} and all || <k — 1.

Lemma 2.7 tells us that it is compactly supported normalized solution of Eq. (1.1) in
(W’Ij—l(IRS))’ for 1< p < oo, then we havé,¢(0) = 0 forall 0 < |u| <k — 1 andT,¢(2np) = O
forall 5 € 7°\{0} and all|u| <k — 1. These conditions are called Strang-Fix conditions of order
k (see [1,14,21]). By using the Poisson summation formula one can easily see that the Strang-Fix
conditions of ordek are equivalent to the following conditions:

> 2 <5> (A%)' Buyo(x — o) = (A" Vju|<k—1 ae,x e R'. (2.11)

aeZ’ V<

Thus, ¢ reproduces all polynomials iff;,_1, wherell;_; denote the linear space of all polyno-
mials of degree at mo&t— 1.

Lemma 2.8(Chen et al[1]). Supposep, is anr x 1 vector of compactly supported functions
in (WA=1(R*))" (1< p <oo) such that

nli—>moo H QZ Po = (pH(Wzlg_l(RS))r =0,
wherep = (¢4, ..., ¢,)T isanormalized solution of the refinement equafid)in (W},“l(IRS))’,

for 1< p< o0, thene{&)o(O) =landT,py(2nf) = Oforall f € Z°\{0} and all || <k — 1.

By [1] we know that for eachu with |u| <k — 1 there exists somg, € H|I«¢\*l such that

o (‘:) (A2)' By—ypo(x — o) = (Ax)* + gu(x), x € R, (2.12)

oaeZ® V<

andg, = O ifand only if T,pq(0) = O for all 1< |u| <k — 1.
Following Theoren?.9 gives a characterization of convergence rates of cascade algorithm in
(Lp(R))" (1< p<00).

Theorem 2.9. Let ¢ = (¢4, ..., ¢,)T be a normalized solution of the refinement equation
(1.1) with dilation matrix M being isotropic. Supposge € (Lip(y, L, (R%)))" withn > 0 and
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1< p <oo. Suppose k is the positive integer satisfyingl < n<k.Lety = (f,..., %) bein
(L, (R*))" (1< p < oo) satisfying Strang-Fix conditions of orderile., satisfiesl;y(0) = Ofor
all 0 < |u|<k—1land T (2np) = Oforall f € Z°\{O} and all || <k — 1.1f K(p) S K (),
then there exists a positive constant C such that

| Qi =g, <Con MM vneN.

Proof of Theorem 2.9. Since the normalized solutiop of refinement equation (1.1) lies in
(Lip(n, L,(R*)))" with k — 1 < n<k, theng € (Ws~1(R"))". By Lemma2.7, ¢ satisfies
Strang-Fix conditions of ordd, therefore,

> 2 (D (A0)'Byyp(x —a) = (A0)* Vju|<k—1 ae.x e R

acZ® V<

For B,—, = (B}H,...B;ﬂ,,)T, there exist real-valued compactly supported functions

g1, ..., & € Ly(R%) such that
AS (Ax)#—vgj(x) dx = Bi_‘,, j=1,...,r

where% + % = 1. Let P, be the quasi-projection operator given by

Pof = Z Z<f7gj(~—oc) >@i(—a), feLpR).

aeZ j=1
For|u| <k — 1 we have

Pp(Ax) =" " < (Ax)". gj(- — o) > ¢, (- — )

oweZ® j=1

=y > (’j) (A)’ / (A)* g (x) dx; (- — )
RS

oaeZ® VL

=2 2 (l:> (A" By_p; (- = )

oeZ® V<
= > (’j) (AD)" By — @) = (An)',
oaeZ® V<

Thus, P, reproduces all polynomials of degree at most 1, i.e.,P,q = g forall g € IT;_;.
Let P, be the quasi-projection operator given by

Puf= Y <fgit—m>y;(—w), feLyR).

acZ® j=1

By our assumptions o, we know thatPy, also reproduces all polynomials of degree at most
k—1,ie.,Pyq=qforallg € 3.
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Leta, andc, (n = 1,2,...) be the same sequence s as above. SineeLip(y, L,(R*)))",
from Theorem 5.1 of13] we have

3 @M - —a) — g <Catm™5y™

oaeZ?®

and

> @Y (M" -—2) — g <Calm™V5)™,

oaeZ?®

p

whereCy is positive constant independentofSinceg is a solution of refinement equation (1.1),
we havep = )" 7+ a,(0)(M" - —o). Hence, it follows that

3 (en@) = an(@)p(M" - —a)| < Ca(m™ )",

s
aeZ p

Note thatK (p) € K (i), it follows from Lemma2.2 that there exists a positive constamt
independent of such that

D (en(@) = an () (M" - —a) | < Cs(m™ )",
oaeZ?® »

Hence,

lo—0ouvl,

<= anlpM" - =) | + | (ea(@) — an ()P (M" - —)

aeZ*® » oaeZ® »
<(Ca+ Cs)(m ™5™,
We complete the proof of Theoregn9. [

Remark 2.10. Under assumptions that initial vector of functignhsatisfies Strang-Fix con-
ditions of orderk, we give a characterization of convergence rates of cascade algorithm in
(L, (R*)" (1< p<o0). Itfollows from Lemma2.8 that the assumptions @rto satisfy7),\(2r5)

= Oforallp € 72°\{0} and all|u| <k —1 are necessary. When= 1, the conditiond,y(2rf8) = 0

forall § € 7°\{0} and all|u| <k — 1 are reduced t(b)“@(Znﬁ) = Ofor all p € 7°\{0} and all
|ul <k — 1. We note that Theorem 2.9 appeared also in [29Mo« 2.

3. Characterization of L, smoothness of a refinable function

In this section, we will investigate the smoothness of solution of refinement equations (1.1)
with M = qI;«s, Whereq >2 is an integer. We give a characterization for the smoothness of a
refinable function in terms of the corresponding refinement nasakd dilation matrixg I .

The proof of our result is based on following theorem.
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Theorem 3.1. Letv > 0 and k be a positive integer. Let>2 be an integer. Ifp € (Lip*
(v, L,(R*)))" andk > v, then there exists a constafif > 0 such that

||v,’;_ﬂejqo||p<Ceq—"V vV1<j<s, neN. (3.1)

Converselyjf ¢ e (L,(R")) (1< p<oo) satisfies the conditions i8.1), then¢ e (Lip*
(v, Lpy(R))".

Proof. We only need to prove this theorem foe= 1. We follow the line of4]. The proofis based
on following results from Ditzian [2,3]: for a functiop in L ,(R) for 1< p < oo (¢ is continuous
in the casep = o), ¢ lies in Lip*(v, L ,(R)) for v > 0 if and only if, for some integekt > v,
there exists a constafgg > 0 such that

Vgl <Coq ™" V1<j<s, neN. (3.2)
If inequality (3.1) holds true for = 1, we pickh to be a function such thaf:z|| ,» <1, where

% + %/ = 1. Defineh; to be the convolution op andh, i.e.,

h1(x) ::/ o(x —Hh(@)dt, xeR’.
RS

It is easily seen thdt; is continuous and bounded. It follows from (3.1) thatfoe 1,2, ..., s,

1Vgne h1lloo = 1(Viny @)  hlloo <V, @llplikll y <Cog ™ Vn € N.

J

Hence, we have

|V§_nel_h1(tej)|éCGq*”" VieR, neN.
By (3.2), we know that there exists a positive constégnindependent o such that
|erihl(tej)| <Ct’ VieR, 1>0. (3.3)
It follows from inequality (3.3) that for any functiomwith [|2( » <1, we have
IVE, h1(0)] = |(VA, @) ¥ h(O|<C7e', j=1.....s V>0,

Therefore,

||V§ej<p||p = sup /W(vfej<p)(—x)h(x)dx <Ct’, j=1,....s, 1>0.

Il <1

Following [2], we know thatp € Lip*(v, L,(R®)). If ¢ € Lip*(v, L,(R®)), by the definition of
Lipschitz spacéip* (v, L, (R)), there exists a positive constaty such that

IVgone, 9llp <Cog ™ VISj<s. neN.

We complete the proof of Theoregal. O
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By using some methods similar fp1,18], we obtain

Lemma 3.2. Letp = (¢q, ..., 9,)] € (Lp(R%))" (1< p<oo) be a compactly supported solu-
tion of the refinement equatidf.1) with mask a and dilation matri’ = g I, whereg >2is
an integer. Let:,, be defined by1.10).If there exists a constarilg such thatforj = 1,...,s

IV5anll, <Coq®/?™" V¥n e N, (3.4)
theng e (Lip*(v, L,(R*)))". Converselyif ¢ € (Lip*(v, L,(R*)))" for 1< p<oo andk > v,
then(3.4) holds true provided that the shifts apy, ..., ¢, are stable.

We will use thep-norm joint spectral radius of a finite collection of some linear operators
restricted to a certain finite dimensional common invariant subspace to characterize the critical
exponent,(¢) of a vector refinement functiop. Let us review some notations pfnorm joint
spectral radius fronfB]. Let A be a finite collection of some linear operators(@s(Z*))". For a
positive integen we denote by4” the Cartesian power o4.:

A" ={(A1,..., Ayt A1, ..., A, € A}

Whenn = 0, we interpret4® as the set/}, wherel is the identity mapping.
Let

A" loo :=maxX{[|A1--- Anll : (A1, ..., Ap) € A"}
Then the uniform joint spectral radius gfis defined to be
Poo(A) = lim A" " (35)
Thep-norm joint spectral radius od is defined to be
pp(A) = lim A" (3.6)

Let a be an element oftg(Z*))" x r. For ¢ € {r;jyj =01,...,¢" -1}, where{yj,j =
0,1,...,¢° — 1} be theg® distinct elements of coset spacé%/qZ° with 7o = 0. We denote
E={yp.k=0,1,...,¢°—1}. Thus, each elemente Z* can be uniquely representedsasqy,
wherees € E andy € Z°. For ¢ € E, anda € (£o(Z%))"*", we define the linear operatoss on
(o(Z%)" as

Acu() = Y ale +qo— Pu(p). a€Z' ueo(Z)) . (3.7)
pez*

Following almost word for word the consideration of the proof of Len8&in [18], we have

Lemma 3.3. Let a be an element a@to(Z*))"*", and leta,(n = 1,2, ...) be given by(1.10)
with M = g5, Whereq >2is an integer. Foe € E, let A, be the linear operator 0¢g(Z*))"
defined by(3.7).Let A = {A,; ¢ € E}. Then,we have fok >0,

; k. qyi/n _
Jim 1VEanlly" = p,(Aly),

where V is the minimal common invariant subspacedofjenerated byel(A’;(S), 1<j<s,
1<i<r.
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By using same method as the proof of Theorem 338}, we can obtain main result of this
section. The proof of theorem is omitted.

Theorem 3.4. Letg = (¢4, ..., ¢,)T be the compactly supportdd,-solution of Eq(1.1)with

a € (Lo(Z%))*" and M = gl;«s, Wwhereg >2 is an integer. Fore € E, let A, be the linear
operator on(£o(Z°%))" defined by(3.7).Let A = {A,; ¢ € E}, k be a positive integer and V be
minimal common invariant subspace.éfgenerated byl(A’]‘.é), 1<j<s,1<I<r. Then

1
‘)[7((70)21/[)_ ;logqpp(A|V)v (38)

in addition, if the shifts ofp,, ..., ¢, are stable and ik > 1/p — %Iogqpp(AW), then equality
(3.8)holds.

Remark 3.5. Theorem3.4 was established in [18] for the case- 1 andM = 2. In [15], Jia

et al. gave a complete characterization for the smoothness af tiselution of Eq. (1.1) without
assuming stability whem = 1, M = 2 and IK p<oco. Whenr = 1 and 1< p < oo, the

smoothness of refinable distributions was characterized in [27,28]4od and also in [24,29]
for M = 21 ;.
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