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Abstract

We investigate the solutions of vector refinement equations of the form

� =
∑
�∈Zs

a(�)�(M · −�),

where the vector of functions�= (�1, . . . ,�r )
T is in (Lp(Rs ))r , 1�p�∞, a =: (a(�))�∈Zs is a finitely

supported sequence ofr × r matrices called the refinement mask, andM is ans × s integer matrix such that
limn→∞M−n = 0. Associated with the maska andM is a linear operatorQa defined on(Lp(Rs ))r by
Qa� := ∑

�∈Zs a(�)�(M ·−�). The iteration scheme(Qna�)n=1,2,... is calleda cascadealgorithm (see [D.R.
Chen, R.Q. Jia, S.D. Riemenschneider, Convergence of vector subdivision schemes in Sobolev spaces, Appl.
Comput. Harmon. Anal. 12 (2002) 128–149; B. Han, The initial functions in a cascade algorithm, in: D.X.
Zhou (Ed.), Proceeding of International Conference of Computational Harmonic Analysis in Hong Kong,
2002; B. Han, R.Q. Jia, Multivariate refinement equations and convergence of subdivision schemes, SIAM
J. Math. Anal. 29 (1998) 1177–1199; R.Q. Jia, Subdivision schemes inLp spaces, Adv. Comput. Math.
3 (1995) 309–341; R.Q. Jia, S.D. Riemenschneider, D.X. Zhou, Vector subdivision schemes and multiple
wavelets,Math. Comp. 67 (1998) 1533–1363; S. Li, Characterization of smoothness ofmultivariate refinable
functions and convergence of cascade algorithms associated with nonhomogeneous refinement equations,
Adv. Comput. Math. 20 (2004) 311–331; Q. Sun, Convergence and boundedness of cascade algorithm in
Besov space and Triebel–Lizorkin space I, Adv. Math. (China) 29 (2000) 507–526]). Cascade algorithm
is an important issue to wavelets analysis and computer graphics. Main results of this paper are related
to the convergence and convergence rates of vector cascade algorithm in(Lp(R

s ))r (1�p�∞). We give
some characterizations on convergence of cascade algorithm and also give estimates on convergence rates
of this cascade algorithm withM being isotropic dilation matrix. It is well known that smoothness is a very
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important property of a multiple refinable function. A characterization ofLp(1�p�∞) smoothness of
multiple refinable functions is also presented whenM = qI s×s , whereIs×s is thes × s identity matrix,
andq�2 is an integer. In particular, the smoothness results given in [R.Q. Jia, S.D. Riemenschneider, D.X.
Zhou, Smoothness of multiple refinable functions and multiple wavelets, SIAM J. Matrix Anal. Appl. 21
(1999) 1–28] is a special case of this paper.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A vector refinement equation is a functional equation of the form

� =
∑
�∈Zs

a(�)�(M · −�), x ∈ Rs , (1.1)

where� = (�1, . . . ,�r )
T is in (Lp(Rs))r , 1�p�∞, a is a finitely supported refinement mask

such that eacha(�) is an r × r (complex) matrix andM is an s × s integer matrix such that
limn→∞M−n = 0. Eq. (1.1) is called a homogeneous vector refinement equation. The solutions
of Eqs. (1.1) are calledmultiple refinable functions. It iswell known that refinement equations play
an important role in wavelet analysis and computer graphics (see [1,4,5,7–9,12,17,19–23,25,26]).
Most usefulwavelets inapplicationsaregenerated from refinable functions.Thecascadealgorithm
and smoothness of refinable function are two important issues in wavelets analysis and computer
graphics. For example, cascade algorithm can be used to characterize the existence of solution
and orthogonality of shifts of solution of Eq. (1.1) and also have strong impact on applications
of wavelet to computer graphics. Smooth wavelets are needed in image processing and signal
processing. The approximation and smoothness properties of wavelets are determined by the
corresponding refinable functions. Therefore, it is very important to investigate the convergence
of cascade algorithm and smoothness of refinable functions.
Before proceeding, we introduce some notations. For 1�p�∞, by (Lp(Rs))r we denote the

linear space of all vectorsf = (f1, . . . , fr )
T such that‖f ‖p < ∞, where

‖f ‖p :=

 r∑
j=1

∫
Rs

|fj |pdx



1/p

, 1�p < ∞,

and‖f ‖∞ is the essential supremum of max1� j� r |fj | onRs . When 1�p�∞, ‖ · ‖p is a norm
and, equipped with this norm,(Lp(Rs))r is a Banach space.
The Fourier transform of a vector of functions in(L1(R

s))r is defined by

f̂ (�) :=
∫

Rs
f (x)e−ix·� dx, � ∈ Rs , (1.2)

wherex · � denotes the inner produce of two vectorsx and� in Rs .
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The study of smoothness of� is related to properties of shift-invariant spaces. Suppose� =
(�1, . . . ,�r )

T is anr × 1 vector of compactly supported functions in(Lp(Rs))r (1�p�∞).
We useS(�) to denote the shift-invariant space generated from�, which is the linear space of
functions of the form

r∑
j=1

∑
�∈Zs

bj (�)�j (· − �),

whereb1, . . . , br ∈ �(Zs), the linear space of all sequences onZs . The shifts of compactly
supported functions�1, . . . ,�r ∈ Lp(Rs)(1�p�∞) are said to beLp-stable if there exist two
positive constantsC1 andC2 such that, for arbitraryb1, . . . , br ∈ �p(Zs),

C1

r∑
j=1

‖bj‖p�

∥∥∥∥∥∥
r∑
j=1

∑
�∈Zs

bj (�)�j (· − �)

∥∥∥∥∥∥
p

�C2

r∑
j=1

‖bj‖p,

where�p(Zs) denotes the linear space of all sequencec for which‖c‖p < ∞, the�p-norm ofc
is defined by

‖c‖p :=

∑

�∈Zs

|c(�)|p



1/p

, 1�p < ∞,

and‖c‖∞ is the supremumof|c|onZs . Clearly,‖·‖p is a norm for 1�p�∞. It was proved in[16]
that the shifts of�1, . . . ,�r areLp-stable if and only if, for any� ∈ Rs , the sequences(�̂j (� +
2��))�∈Zs , j = 1, . . . , r are linear independent. In [10], Jia obtained a similar characterization for
Lp-stability of the shifts of a finite number of compactly supported distributionswhen0< p < 1.

We denote the set of all positive integers byN, and letN0 := N ∪ {0}. A multi-index is an
s-tuple� = (�1, . . . , �s) ∈ Ns

0. The length of� is |�| := �1 + · · · + �s . The partial derivative of
a differentiable functionf with respect to thejth coordinate is denoted byDjf, j = 1, . . . , s, and
for � = (�1, . . . , �s) ∈ Ns

0, D
� is the partial differential operatorD

�1
1 · · ·D�s

s . For 1�p�∞
and an integerk�0, we useWk

p(R
s) to denote the Sobolev space that consists of all distributions

f such thatD�f ∈ Lp(Rs) for all multi-indices�, with |�|�k. The Sobolev norm is defined by

‖f ‖Wk
p(R

s ) :=
∑

|�|�k

∥∥D�f
∥∥
p
.

With above norm,Wk
p(R

s) becomes a Banach space.
Weuse(Wk

p(R
s))r to denote the space that consists of all vector of functionsf = (f1, . . . , fr )

T

such thatfj ∈ Wk
p(R

s) for j = 1,2, . . . , r. The norm on(Wk
p(R

s))r is denoted by

‖f ‖(Wk
p(R

s ))r :=

 r∑
j=1

‖fj‖pWk
p(R

s )




1/p

.

If � = (�1, . . . ,�)
T is a compactly supported solution of (1.1) in(Wk

p(R
s))r for 1�p�∞.

Taking the Fourier transform of both sides of (1.1), we obtain

�̂(�) = H((MT )−1�)�̂((MT )−1�), � ∈ Rs , (1.3)
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whereMT denotes the transpose ofM, and

H(�) := 1

|detM|
∑
�∈Zs

a(�)e−i�·�, � ∈ Rs . (1.4)

Evidently,H(�) is 2�-periodic. If �̂(0) �= 0, then�̂(0) is an eigenvector of the matrixH(0)
corresponding to eigenvalue 1. It was also proved in[1] that if � satisfies�̂(0) �= 0 and span
{�̂(2��) : � ∈ Zs} = Cr , then 1 is a simple eigenvalue ofH(0) and other eigenvalues ofH(0)
are less than(�(M))−k in modulus, where�(M) denote the spectral radius of dilation matrixM.
These conditions are called Eigenvalue Condition. Under above conditions onH(0), refinement
equation (1.1) has a unique compactly supported distributional solution� up to a constant factor.
Let� be a solution of vector refinement equation (1.1) in(Wk

p(R
s))r for 1�p�∞, if the shifts

of � is stable, thenH(0) satisfies Eigenvalue condition.
In this paper we assume thatH(0) satisfies Eigenvalue condition. Thus, there is a nonsingular

matrixV so thatVH(0)V −1 has the form(
1 0
0 �

)
, (1.5)

where� is an(r −1)× (r −1)matrix that satisfies limn→∞ �n = 0. Defineb(�) = V a(�)V −1,
then� = V� satisfies the refinement equation

� =
∑
�∈Zs

b(�)�(M · −�), x ∈ Rs , (1.6)

where� is a solution of (1.1). Therefore, we may assume that ther × r matrixH(0) has the form
(1.5), without losing anything.
Forj = 1,2, . . . , r, we use ej to denote thejth column of ther × r identity matrix. It is easily

seen that

eT1H(0) = eT1 . (1.7)

In order to studyLp-solutions of the refinement equation (1.1) we shall employ the following
iteration scheme. LetQa be the linear operator on(Lp(Rs))r (1�p�∞) given by

Qaf :=
∑
�∈Zs

a(�)f (M · −�), f ∈ (Lp(Rs))r (1�p�∞). (1.8)

Let �0 be anr × 1 initial vector of functions in(Lp(Rs))r (1�p�∞). For n = 1,2, . . ., let
�n := Qna�0. If {�n}n=1,2,... converges to some� in the(Lp(Rs))r space for 1�p�∞, then the
limit � is a solution of (1.1) in(Lp(Rs))r (1�p�∞). Iterating (1.8)n times gives

Qna�0 =
∑
�∈Zs

an(�)�0(M
n · −�), n = 1,2, . . . , (1.9)

where forn = 1,2, . . . , a1 = a andan is defined by following iterative relations:

an(�) =
∑
�∈Zs

an−1(�)a(� −M�), � ∈ Zs . (1.10)

The iteration scheme{Qna�0}n=1,2,... is called cascade algorithm. The cascade algorithms
play an important role in computer graphics and wavelet analysis. Therefore, there are many
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papers to be devoted to studying convergence of cascade algorithms mentioned above (see
[1,5,6,9,12,17,27,28]). Let� be the unique compactly supported distributional solution of refine-
ment equation (1.1) subject to the conditioneT1 �̂(0) = 1. Such a solution is called the normalized
solution of refinement equation (1.1). It was proved in [21] that if limn→∞ ‖Qna�0 − �‖p = 0,
then�0 must satisfy Strang-Fix conditions of order 1. A typical choice of initial function vector
is given by

�0 = eT1

s∏
j=1

	(xj ), x = (x1, . . . , xs) ∈ Rs ,

where 	(t) is the characteristic function of the interval[0, 1). We will prove that if
limn→∞ ‖Qna�0−�‖p = 0 for this initial function vector�0, then limn→∞ ‖Qna�−�‖p = 0 for
any vector of compactly supported functions� in (Lp(Rs))r (1�p�∞) satisfying Strang-Fix
conditions of order 1. Reader is referred to[14] for some related discussions on Strang-Fix condi-
tions. However, the sequence{Qna�0}n=1,2,... may diverge for this initial function vector, even if
the normalized solution� lies in (Lp(Rs))r (1�p�∞). Thus, it is necessary to find appropriate
conditions on initial function vector�0 such that

lim
n→∞ ‖Qna�0 − �‖p = 0.

When r = 1, Jia [12] obtained a characterization on initial vector of functions�0 to ensure
limn→∞ ‖Qna�0 − �‖p = 0. Whenr > 1,M = 2 and 1< p < ∞, Sun also established a
similar characterization in [29] with a different method. Let us simply review Jia’s results.

Theorem A (Jia [12]). Let� be the normalized solution of the refinement equation(1.1)with
r = 1 and inLp(Rs)(1�p�∞). Let� be a compactly supported function inLp(Rs) satisfying
Strang-Fix conditions of order1. If K(�) ⊆ K(�), then

lim
n→∞

∥∥Qna� − �
∥∥
p

= 0,

whereK(�) = {
c(�) ∈ �(Zs); ∑

�∈Zs c(�)�(· − �) = 0
}
.

We point out that the shifts of� is linear independent ifK(�) = {0}. Jia also established es-
timates for the convergence rate of cascade algorithm with dilation matrixM being isotropic.
A dilation matrix M is isotropic if M is similar to a diagonal matrixdiag(
1, . . . , 
s) with
|
1| = · · · = |
s |.

Theorem B (Jia [12]). Let � be the normalized solution of the refinement equation(1.1)with
r = 1 and dilation matrix M being isotropic. Suppose� ∈ Lip(�, Lp(Rs)), where� > 0 and
1�p�∞.Supposek is an integer such thatk−1< ��k.Let�beacompactly supported function
inLp(Rs) satisfyingStrang-Fix conditions of order k. IfK(�) ⊆ K(�),and ifD��̂(0) = D��̂(0)
for all |�| < k, then there exists a positive constant C such that∥∥Qna� − �

∥∥
p

�C(m−1/s)n� ∀n ∈ N.

We remark that a result similar to TheoremB was also established in[29] for the case
r > 1,M = 2 and 1< p < ∞. In particular, TheoremB confirms a conjecture of Ron on
convergence of cascade algorithms (see [26]).
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In Section2, we will investigate the convergence and convergence rates of cascade algorithm
associatedwith vector refinement equations (1.1) in(Lp(R

s))r (1�p�∞).Wewill extend above
theorems to vector refinement equation (1.1). This goal will be achieved by employing some
approaches used in [1,13,12,14,21].
We use the generalized Lipschitz space tomeasure smoothness of a given function. For� ∈ Rs ,

the difference operator∇� is defined by

∇�f := f − f (· − �).

The difference operator∇j on�0(Zs) denoted by

∇j a := a − a(· − ej ).
The modulus of continuity of a functionf in Lp(Rs)(1�p�∞) is defined by

(f, h)p := sup
|�|�h

‖∇�f ‖p, h�0.

For 1�p�∞ and 0< ��1, the Lipschitz space Lip(�, Lp(Rs)) consists of those functions
f ∈ Lp(Rs) for which

(f, h)p�Ch� ∀h > 0,

whereC is a positive constant independent ofh. When� > 1, we write� = l + �, wherel is an
integer and0< ��1. TheLipschitz spaceLip(�, Lp(Rs)) consists of those functionsf ∈ Lp(Rs)
for whichD�f ∈ Lip(�, Lp(Rs)) for all multi-indices� with |�| = l.
We use(Lip(�, Lp(Rs)))r to denote the linear space of all vectorsf = (f1, . . . , fr )

T such
thatf1, . . . , fr ∈ Lip(�, Lp(Rs)). Let k be a positive integer. Thekth modulus of smoothness of
f ∈ Lp(Rs)(1�p�∞) is defined by

k(f, h)p := sup
|�|�h

‖∇k�f ‖p, h�0.

For � > 0, let k be an integer greater than�. The generalized Lipschitz space Lip*(�, Lp(Rs))
consists of those functionsf ∈ Lp(Rs) for which

k(f, h)p�Ch� ∀h > 0,

whereC is a positive constant independent ofh.
By (Lip∗(�, Lp(Rs)))r we denote the linear space of all vectorsf = (f1, . . . , fr )

T such
thatf1, . . . , fr ∈ Lip∗(�, Lp(Rs)). The optimal smoothness of a vectorf ∈ (Lp(Rs))r in the
Lp-norm is described by its critical exponent�p(f ) defined by

�p(f ) := sup
{
� : f ∈ (Lip∗(�, Lp(Rs)))r

}
.

Our another concern is theLp smoothness of solution of refinement equation (1.1) withM =
qIs×s , whereq�2 is an integer. Whens = 1 andM = 2, Jia et al. [18] gave a characterization
of smoothness of multiple refinable function in(Lp(R))r (1�p�∞). Whenr = 1 and dilation
matrix is isotropic, Jia [11] obtained a characterization ofL2 smoothness of multi-variate refin-
able function. In [22], author obtained a similar characterization ofL2 smoothness of multiple
refinable functions withM being isotropic matrix. In Section 3, we will give a characterization of
Lp(1�p�∞) smoothness of solutions of vector refinement equation (1.1) withM = qIs×s . In
particular, the smoothness results given in [18] are the special case of this paper.
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In Section3, we will establish lower bounds of�p(�), when� is aLp solution of Eq. (1.1) for
1�p�∞. We will also show that under some appropriate conditions on�, the lower bound is
optimal.

2. Convergence rates of cascade algorithm in(Lp(Rs))r (1�p�∞)

In this section we investigate the convergence and convergence rates of cascade algorithm asso-
ciated with refinement equation (1.1) by using of some ideas of [1,13,12,14,21]. Let(�0(Z

s))r×d
and(�(Zs))r×d denote the linear spaces of all finitely supported sequences ofr × d matrices and
all sequences ofr × d matrices onZs , respectively. We introduce a bilinear form on a pair of
linear space(�0(Zs))r×1 and(�(Zs))1×r as follows:

< u, v >:=
∑
�∈Zs

u(−�)v(�), u ∈ (�(Zs))1×r, v ∈ (�0(Zs))r×1.

It is known that(�(Zs))1×r is the algebraic dual of(�0(Zs))r×1 with respect to this bilinear form.
If < u, v >= 0, thenu andv are called orthogonal and we writeu ⊥ v. The annihilator of a

linear subspaceV of (�0(Zs))r×1 is defined by

V ⊥ :=
{
u ∈ (�(Zs))1×r;< u, v >= 0 ∀v ∈ V

}
.

We need the following Lemma2.1 which was established in [14].

Lemma 2.1. If V is a linear subspace of(�0(Zs))r×1, thenV = (V ⊥)⊥.

Let � = (�1, . . . ,�r )
T be anr × 1 vector of compactly supported functions onRs , we use

K(�) to denote the linear space of all sequencec = (c1, . . . , cr ) onZs such that

r∑
j=1

∑
�∈Zs

cj (�)�j (· − �) = 0.

We say that the shifts of�1, . . . ,�r are linear independent ifK(�) = {0}. It was proved in[16]
that the shifts of�1, . . . ,�r are linear independent if and only if for any� ∈ Cr ,

span
{
�̂(� + 2��) : � ∈ Zs

} = Cr .

Hence, linear independent implies stability.
The following lemma extends Lemma2.1 of [12] to the caser > 1which is also of independent

interest.

Lemma 2.2. Let � and� be vectors of compactly supported functions in(Lp(Rs))r (1�p�
∞). SupposeK(�) ⊆ K(�). Then there exists a positive constant C such that

∥∥∥∥∥∥
∑
�∈Zs

b(�)�(· − �)

∥∥∥∥∥∥
p

�C

∥∥∥∥∥∥
∑
�∈Zs

b(�)�(· − �)

∥∥∥∥∥∥
p

∀b ∈ (�p(Zs))1×r.
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Proof. Note thatS(�) denotes the shift-invariant space generated by�. In other words,

S(�) =



r∑
j=1

∑
�∈Zs

uj (�)�j (· − �) : u1, . . . , ur ∈ �(Zs)

 .

Since�1, . . . ,�r are compactly supported. The restriction ofS(�) to the cube[0, 1]s is fi-
nite dimensional. Thus, we can find functions�1, . . . ,�d ∈ Lp(Rs)(1�p�∞) with support
in [0, 1]s such that�1|[0,1]s , . . . ,�d |[0,1]s form a basis forS(�)|[0,1]s . It follows that, for�j ,
j = 1,2, . . . , r, there exist sequencescj1, cj2, . . . , cjd ∈ �0(Zs) such that

�j =
d∑
l=1

∑
�∈Zs

cj l(�)�l (· − �).

Forb ∈ (�p(Zs))1×r, we have
∑
�∈Zs

b(�)�(· − �) =
∑
�∈Zs

(b ∗ c)(�)�(· − �), (2.1)

wherec = (
cjl

)
1� j� r,1� l�d ∈ (�0(Zs))r×d ,� = (�1, . . . ,�d)

T , andc ∗ b denotes the convo-
lution of b andc, given by

b ∗ c(�) =
∑
�∈Zs

b(� − �)c(�).

Since the functions�1, . . . ,� are supported in[0, 1]s and are linearly independent, we know
that there exists a constantC1 such that∥∥∥∥∥∥

∑
�∈Zs

b(�)�(· − �)

∥∥∥∥∥∥
p

�C1 ‖b ∗ cl‖p , l = 1,2, . . . , d, (2.2)

wherecl ∈ (�0(Zs))r×1 is thelth column ofc.
Let V� be the linear span of (multi-integer) shifts ofc1, . . . , cd . It follows from (2.1) that

b ∈ K(�) if and only if b is orthogonal to shifts ofc1, . . . , cd , i.e.,< b, cl(· − �) >= 0,
l = 1,2, . . . , d,∀� ∈ Zs . Therefore, we know thatK(�) = V ⊥

� .
Similarly, we can find linear independent functions�′

1, . . . ,�
′
n in Lp(R

s) supported in[0, 1]s
such that

�j =
n∑
l=1

∑
�∈Zs

hjl(�)�
′
l (· − �), (2.3)

wherehjl,∈ �0(Z
s), for j = 1,2, . . . , r, l = 1,2, . . . , n. Denotehl = (h1l, h2l , . . . , hrl)

T ∈
(�0(Z

s))r×1, l = 1,2, . . . , n. It is easy to check thathl ⊥ K(�) for l = 1,2, . . . , n. It follows
from K(�) ⊆ K(�) thathl ⊥ K(�) = V ⊥

� . By using of Lemma2.1, we obtainhl ∈ V�, for
l = 1,2, . . . , n. Therefore, eachhl can be expressed as

hl =
d∑
j=1

ejl ∗ cj ,
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whereejl ∈ �0(Zs), j = 1,2, . . . , d, l = 1,2, . . . , n. Since

∑
�∈Zs

b(�)�(· − �) =
∑
�∈Zs

(b ∗ h)(�)�′(· − �),

whereh = (hjl)1� j� r,1� l�n ∈ (�0(Zs))r×n, andhl is the lth column ofh. Therefore, there
exists a constantC2 such that

∥∥∥∥∥∥
∑
�∈Zs

b(�)�(· − �)

∥∥∥∥∥∥
p

�C2

n∑
l=1

‖b ∗ hl‖p. (2.4)

Note thatb ∗ hl = ∑d
j=1 ejl ∗ (b ∗ cj ). Hence

‖c ∗ dl‖p =
∥∥∥∥∥∥
d∑
j=1

ejl ∗ (b ∗ cj )
∥∥∥∥∥∥
p

�
d∑
j=1

‖ejl‖1‖b ∗ cj‖p, l = 1,2, . . . , n. (2.5)

We prove this lemma by using of (2.2), (2.4) and (2.5).�

After submitting this paper, I received a preprint of Q. Sun entitled “Linear dependence of the
shifts of vector-valued compactly supported distributions”, in which Lemma 2.2 is proved with a
different method (see [30]).
Weare in aposition togive characterizationsof convergenceof cascadealgorithms in(Lp(R

s))r

(1�p�∞).

Theorem 2.3. Let� = (�1, . . . ,�r )
T be the normalized solution of the refinement equation(1.1)

in (Lp(Rs))r (1�p�∞). If � is a vector of compactly supported functions satisfying Strang-Fix
conditions of order1,and ifK(�) ⊆ K(�), then

lim
n→∞

∥∥Qna� − �
∥∥
p

= 0.

In the casep = ∞, if both� and� are continuous,thenQna� converges to� uniformly.

Proof of Theorem 2.3.We only consider the case 1�p < ∞. Since the proof ofp = ∞ is
similar. We pickgj , j = 1,2, . . . , r to be compactly supported functions inLp′(Rs) such that∫

Rs g1(x) dx = 1 and
∫

Rs gj (x) dx = 0, j = 2, . . . , r, where 1
p

+ 1
p′ = 1. Let P� be the

quasi-projection operator given by

P�f :=
∑
�∈Zs

r∑
j=1

< f, gj (· − �) > �j (· − �), f ∈ Lp(Rs),

where< f, gj (· − � > denotes the inner product of two functionsf andgj (· − �).
Since� is the normalized solution of Eq. (1.1) in(Lp(Rs))r (1�p�∞), it was proved in [21]

that�must satisfyStrang-Fix conditionsof order 1which imply thateT1 �̂(0) = 1andeT1 �̂(2��) =
0, for all� ∈ Zs\{0}. By Poisson summation formula, one can easily prove that these conditions



132 S. Li / Journal of Approximation Theory 137 (2005) 123–142

are equivalent to the conditioneT1
∑

�∈Zs �(· − �) = 1. Therefore, quasi-projection operators
P� reproduces constants, i.e.,P�1 = 1. Similarly, letP� be the quasi-projection operator given
by

P�f :=
∑
�∈Zs

r∑
j=1

< f, gj (· − �) > �j (· − �), f ∈ Lp(Rs).

Since� also satisfy Strang-Fix conditions of order 1, then quasi-projection operatorP� also
reproduces constants, i.e.,P�1 = 1. Consequently, forf ∈ Lp(Rs), 1�p�∞, we have (see
[13])

lim
n→∞

∥∥∥∥∥∥f −
∑
�∈Zs

r∑
j=1

< f,mngj (M
n · −�) > �j (M

n · −�)

∥∥∥∥∥∥
p

= 0 (2.6)

and

lim
n→∞

∥∥∥∥∥∥f −
∑
�∈Zs

r∑
j=1

< f,mngj (M
n · −�) > �j (M

n · −�)

∥∥∥∥∥∥
p

= 0. (2.7)

Forn = 1,2, . . ., let cn be the sequence ofr × r matrices given by

cn(�) := (
< �j , m

ngl(M
n · −�) >

)
1� j,l� r , � ∈ Zs .

It follows from (2.6) and (2.7) that

lim
n→∞

∥∥∥∥∥∥� −
∑
�∈Zs

cn(�)�(M
n · −�)

∥∥∥∥∥∥
p

= 0, (2.8)

and

lim
n→∞

∥∥∥∥∥∥� −
∑
�∈Zs

cn(�)�(M
n · −�)

∥∥∥∥∥∥
p

= 0. (2.9)

Since� is the normalized solution of Eq. (1.1), we have

� =
∑
�∈Zs

an(�)�(M
n · −�),

where the sequencean (n = 1,2, . . .) are given in (1.10).
It follows that

lim
n→∞

∥∥∥∥∥∥
∑
�∈Zs

(cn(�)− an(�))�(Mn · −�)

∥∥∥∥∥∥
p

= 0.
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SinceK(�) ⊆ K(�), Lemma 2.2 tells us that there exists a positive constantC independent ofn
such that∥∥∥∥∥∥

∑
�∈Zs

(cn(�)− an(�))�(Mn · −�)

∥∥∥∥∥∥
p

� C

∥∥∥∥∥∥
∑
�∈Zs

(cn(�)− an(�))�(Mn · −�)

∥∥∥∥∥∥
p

= C

∥∥∥∥∥∥
∑
�∈Zs

cn(�)�(M
n · −�)− �

∥∥∥∥∥∥
p

.

But

∥∥Qna� − �
∥∥
p

=
∥∥∥∥∥∥

∑
�∈Zs

an(�)�(M
n · −�)− �

∥∥∥∥∥∥
p

�

∥∥∥∥∥∥
∑
�∈Zs

an(�)�(M
n · −�)−

∑
�∈Zs

cn(�)�(M
n · −�)

∥∥∥∥∥∥
p

+
∥∥∥∥∥∥

∑
�∈Zs

cn(�)�(M
n · −�)− �

∥∥∥∥∥∥
p

� C

∥∥∥∥∥∥
∑
�∈Zs

cn(�)�(M
n · −�)− �

∥∥∥∥∥∥
p

+
∥∥∥∥∥∥

∑
�∈Zs

cn(�)�(M
n · −�)− �

∥∥∥∥∥∥
p

.

It follows from (2.8) and (2.9) that limn→∞
∥∥Qna� − �

∥∥
p

= 0, as desired. �

Remark 2.4. We remark that if the normalized solution� of refinement equation (1.1) lies in
(Lp(R

s))r (1�p�∞), then it was proved in [21] that� satisfies Strang-Fix conditions of or-
der 1, i.e.eT1 �̂(0) = 1, andeT1 �̂(2��) = 0 for all � ∈ Zs\{0}. It was also proved in [21] that
if � is a vector of compactly supported functions in(Lp(Rs))r (1�p�∞), such that cascade
algorithm with initial vector of function� converges to� in (Lp(Rs))r (1�p�∞), then�
satisfies Strang-Fix conditions of order 1. Therefore, the assumption on� to satisfy Strang-
Fix conditions of order 1 in Theorem 2.3 is necessary. It follows from Theorem 2.3 that if
the shifts of�1, . . . ,�r are linearly independent, thenK(�) = {0} which implies that cas-
cade algorithmQna� converges to� in (Lp(Rs))r (1�p�∞) for any vector of compactly
supported functions� ∈ (Lp(R

s))r (1�p�∞) satisfying Strang-Fix conditions of order 1.
In fact, we can prove that if the shifts of�1, . . . ,�r are stable, then cascade algorithmQna�
converges to� in (Lp(Rs))(1�p�∞) for any vector of compactly supported functions� ∈
(Lp(R

s))r (1�p�∞) satisfying Strang-Fix conditions of order 1.

Theorem 2.5. Suppose�0 = (�1,0, . . . ,�r,0)
T is the vector of compactly supported func-

tions in (Lp(Rs))r for 1�p�∞, �0 satisfies Strang-Fix conditions of order1. If the shifts
of �1,0, . . . ,�r,0 are stable. Let� be the normalized solution of refinement equation(1.1) in
(Lp(R

s))r for 1�p�∞ such that

lim
n→∞ ‖Qna�0 − �‖p = 0,
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then for any vector of compactly supported functions� in (Lp(Rs))r (1�p�∞) satisfying
Strang-Fix conditions of order1,we have

lim
n→∞ ‖Qna� − �‖p = 0.

In particular, if the normalized solution� = (�1, . . . ,�r )
T of refinement equation(1.1) lies

in (Lp(Rs))r for 1�p�∞ and the shifts of�1, . . . ,�r are stable,then the cascade algorithm
Qna� converges to� in (Lp(R

s))r (1�p�∞) for any vector of compactly supported functions
� ∈ (Lp(Rs))r (1�p�∞) satisfying Strang-Fix conditions of order1.

Proof of Theorem 2.5. The proof follows the lines of the proof of Theorem2.3.We pick a vector
of compactly supported functions in(Lp(Rs))r satisfying Strang-Fix conditions of order 1. Let
P�0

andP� be the quasi-projection operators denoted as in the proof of Theorem 2.3. Since�0
and� satisfy Strang-Fix conditions of order 1. It follows from the proof of Theorem 2.3 that

lim
n→∞

∥∥∥∥∥∥� −
∑
�∈Zs

cn(�)�0(M
n · −�)

∥∥∥∥∥∥
p

= 0

and

lim
n→∞

∥∥∥∥∥∥� −
∑
�∈Zs

cn(�)�(M
n · −�)

∥∥∥∥∥∥
p

= 0,

where(cn(�)) is the sequence ofr × r matrix as in the proof of Theorem2.3. Since the shifts of
�1,0, . . . ,�r,0 are stable, there exists a constantC2 > 0 such that

‖an − cn‖p �C2m
n/p

∥∥∥∥∥∥
∑
�∈Zs

(cn(�)− an(�))�0(M
n · −�)

∥∥∥∥∥∥
p

,

wherean is defined by (1.10). Furthermore,

Qna� −
∑
�∈Zs

cn(�)�(M
n · −�) =

∑
�∈Zs

(an(�)− cn(�))�(Mn · −�).

Hence there exists a constantC3 > 0 such that
∥∥∥∥∥∥Q

n
a� −

∑
�∈Zs

cn(�)�(M
n · −�)

∥∥∥∥∥∥
p

�C3m
−n/p ‖an − cn‖p .

Combining the above estimate, we see that
∥∥∥∥∥∥Q

n
a� −

∑
�∈Zs

cn(�)�(M
n · −�)

∥∥∥∥∥∥
p

�C2C3

∥∥∥∥∥∥
∑
�∈Zs

(an(�)− cn(�))�0(M
n · −�)

∥∥∥∥∥∥
p

.
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Therefore, we have∥∥Qna� − �
∥∥
p

�

∥∥∥∥∥∥� −
∑
�∈Zs

cn(�)�(M
n · −�)

∥∥∥∥∥∥
p

+
∥∥∥∥∥∥Q

n
a� −

∑
�∈Zs

cn(�)�(M
n · −�)

∥∥∥∥∥∥
p

�

∥∥∥∥∥∥� −
∑
�∈Zs

cn(�)�(M
n · −�)

∥∥∥∥∥∥
p

+ C2C3

∥∥∥∥∥∥
∑
�∈Zs

(an(�)− cn(�))�0(M
n · −�)

∥∥∥∥∥∥
p

�

∥∥∥∥∥∥� −
∑
�∈Zs

cn(�)�(M
n · −�)

∥∥∥∥∥∥
p

+ C2C3

∥∥∥∥∥∥� −
∑
�∈Zs

cn(�)�0(M
n · −�)

∥∥∥∥∥∥
p

+C2C3

∥∥∥∥∥∥� −
∑
�∈Zs

an(�)�0(M
n · −�)

∥∥∥∥∥∥
p

.

It follows from the above discussions, we complete the proof of Theorem2.5. �

Remark 2.6. We point out that Theorem2.5 appeared in [6] forr = 1, in [27] for s = 1, r = 1
and 1< p < ∞ and in [17] fors = 1 andM = 2.

Toobtain the estimates on convergence rate of cascadealgorithm in(Lp(R
s))r (1�p�∞)with

M being isotropic, we need some notations and some preliminary results. SinceM is isotropic,
thenM is similar to a diagonal matrixdiag(
1, . . . , 
s) with |
1| = · · · = |
s | = m1/s, where
m = |detM|. Therefore, there exists an invertibles × s matrix� = (�j l)1� j,l� s such that

�M�−1 = diag(
1, . . . , 
s).

For j = 1,2, . . . , s, let qj be the linear polynomial given by

qj (x) =
s∑
l=1

�j lxl, x = (x1, . . . , xs) ∈ Rs .

Weuseqj (D) to denote the differential operator
∑s
l=1 �j lDl . Formulti-index� = (�1, . . . , �s) ∈

Ns
0, defineq� = q

�1
1 (x) · · · qs(x)�s .

The factorial of a multi-index� = (�1, . . . , �s) ∈ Ns
0 is defined to be�! := �1! · · · �s !. Let

� = (�1, . . . , �s) and � = (�1, . . . , �s) be two multi-indexes. Then��� means�j ��j for
j = 1,2, . . . , s. By � < � we mean��� and� �= �. For ���, define

(
�
�

)
:= �!

�!(� − �)! .

LetB�(|�|�k − 1) be the 1× r vectors given by the recursive relation

B� =
∑
���

(
�
�

)

�−�B�−�q�(−iD)H(0), (2.10)
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where
�−� = 

�1−�1
1 · · · 
�s−�s

s , B0 = eT1 . This equation can be rewritten as

B�(Ir − 
�H(0)) =
∑

0�=���

(
�
�

)

�−�B�−�q�(−iD)H(0),

whereIr denotes ther× r identity matrix. SincematrixH(0) satisfies Eigenvalue condition, then
the matrixIr − 
�H(0) is invertible for any multi-index� with 0 < |�|�k − 1. Therefore, the
vectorB�(0< |�|�k−1)are unique determined by (2.10). For|�|�k−1 andf ∈ (Wk−1

p (Rs))r ,

defineT�f (�) = ∑
���

(
�
�

)
B�−�q�(−iD)f̂ (�).

With above notations, we introduce the following lemmas which were proved in [1].

Lemma 2.7(Chen et al.[1]). Suppose�1, . . . ,�r are the compactly supported functions in
Wk−1
p (Rs) for 1�p�∞ such that ther × 1 vector� = (�1, . . . ,�r )

T is a normalized so-
lution of the refinement equation(1.1)with M being isotropic. LetB� be denoted by(2.10).Then
T��(0) = 0 for all 0< |�|�k − 1 andT��(2��) = 0 for all � ∈ Zs\{0} and all |�|�k − 1.

Lemma 2.7 tells us that if� is compactly supported normalized solution of Eq. (1.1) in
(Wk−1

p (Rs))r for 1�p�∞, then we haveT��(0) = 0 for all 0< |�|�k−1 andT��(2��) = 0
for all � ∈ Zs\{0} and all|�|�k − 1. These conditions are called Strang-Fix conditions of order
k (see [1,14,21]). By using the Poisson summation formula one can easily see that the Strang-Fix
conditions of orderk are equivalent to the following conditions:

∑
�∈Zs

∑
���

(
�
�

)
(��)�B�−��(x − �) = (�x)� ∀|�|�k − 1 a.e., x ∈ Rs . (2.11)

Thus,� reproduces all polynomials in�k−1, where�k−1 denote the linear space of all polyno-
mials of degree at mostk − 1.

Lemma 2.8(Chen et al.[1]). Suppose�0 is an r × 1 vector of compactly supported functions
in (Wk−1

p (Rs))r (1�p�∞) such that
lim
n→∞

∥∥Qna�0 − �
∥∥
(Wk−1

p (Rs ))r
= 0,

where� = (�1, . . . ,�r )
T is anormalizedsolutionof the refinementequation(1.1)in (Wk−1

p (Rs))r ,

for 1�p�∞, theneT1 �̂0(0) = 1 andT��0(2��) = 0 for all � ∈ Zs\{0} and all |�|�k − 1.

By [1] we know that for each� with |�|�k − 1 there exists someg� ∈ ∏
|�|−1 such that

∑
�∈Zs

∑
���

(
�
�

)
(��)�B�−��0(x − �) = (�x)� + g�(x), x ∈ Rs , (2.12)

andg� = 0 if and only ifT��0(0) = 0 for all 1� |�|�k − 1.
Following Theorem2.9 gives a characterization of convergence rates of cascade algorithm in

(Lp(R
s))r (1�p�∞).

Theorem 2.9. Let � = (�1, . . . ,�r )
T be a normalized solution of the refinement equation

(1.1)with dilation matrix M being isotropic. Suppose� ∈ (Lip(�, Lp(Rs)))r with � > 0 and



S. Li / Journal of Approximation Theory 137 (2005) 123–142 137

1�p�∞.Suppose k is the positive integer satisfyingk−1< ��k. Let� = (�1, . . . ,�)
T be in

(Lp(R
s))r (1�p�∞) satisfying Strang-Fix conditions of order k,i.e.,� satisfiesT��(0) = 0 for

all 0 < |�|�k − 1 and T��(2��) = 0 for all � ∈ Zs\{0} and all |�|�k − 1. If K(�) ⊆ K(�),
then there exists a positive constant C such that

∥∥Qna� − �
∥∥
p

�C(m−1/s)�n ∀n ∈ N.

Proof of Theorem 2.9. Since the normalized solution� of refinement equation (1.1) lies in
(Lip(�, Lp(Rs)))r with k − 1 < ��k, then� ∈ (Wk−1

p (Rs))r . By Lemma2.7, � satisfies
Strang-Fix conditions of orderk, therefore,

∑
�∈Zs

∑
���

(
�
�

)
(��)�B�−��(x − �) = (�x)� ∀|�|�k − 1 a.e., x ∈ Rs .

For B�−� = (B1
�−�, . . . B

r
�−�, )

T , there exist real-valued compactly supported functions
g1, . . . , gr ∈ Lp′(Rs) such that

∫
Rs
(�x)�−�gj (x) dx = B

j
�−�, j = 1, . . . , r,

where 1
p

+ 1
p′ = 1. LetP� be the quasi-projection operator given by

P�f =
∑
�∈Zs

r∑
j=1

< f, gj (· − �) > �j (· − �), f ∈ Lp(Rs).

For |�|�k − 1 we have

P�(�x)
� =

∑
�∈Zs

r∑
j=1

< (�x)�, gj (· − �) > �j (· − �)

=
∑
�∈Zs

∑
���

(
�
�

)
(��)�

∫
Rs
(�x)�−�gj (x) dx�j (· − �)

=
∑
�∈Zs

∑
���

(
�
�

)
(��)�Bj�−��j (· − �)

=
∑
�∈Zs

∑
���

(
�
�

)
(��)�B�−��(· − �) = (�x)�.

Thus,P� reproduces all polynomials of degree at mostk− 1, i.e.,P�q = q for all q ∈ �k−1.
Let P� be the quasi-projection operator given by

P�f =
∑
�∈Zs

r∑
j=1

< f, gj (· − �) > �j (· − �), f ∈ Lp(Rs).

By our assumptions on�, we know thatP� also reproduces all polynomials of degree at most
k − 1, i.e.,P�q = q for all q ∈ �k−1.
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Let an andcn (n = 1,2, . . .) be the same sequence s as above. Since� ∈ (Lip(�, Lp(Rs)))r ,
from Theorem 5.1 of[13] we have∥∥∥∥∥∥

∑
�∈Zs

cn(�)�(M
n · −�)− �

∥∥∥∥∥∥
p

�C4(m
−1/s)n�

and ∥∥∥∥∥∥
∑
�∈Zs

cn(�)�(M
n · −�)− �

∥∥∥∥∥∥
p

�C4(m
−1/s)n�,

whereC4 is positive constant independent ofn. Since� is a solution of refinement equation (1.1),
we have� = ∑

�∈Zs an(�)�(M
n · −�). Hence, it follows that∥∥∥∥∥∥

∑
�∈Zs

(cn(�)− an(�))�(Mn · −�)

∥∥∥∥∥∥
p

�C4(m
−1/s)n�.

Note thatK(�) ⊆ K(�), it follows from Lemma2.2 that there exists a positive constantC5
independent ofn such that∥∥∥∥∥∥

∑
�∈Zs

(cn(�)− an(�))�(Mn · −�)

∥∥∥∥∥∥
p

�C5(m
−1/s)n�.

Hence,∥∥� −Qna�
∥∥
p

�

∥∥∥∥∥∥� −
∑
�∈Zs

cn(�)�(M
n · −�)

∥∥∥∥∥∥
p

+
∥∥∥∥∥∥

∑
�∈Zs

(cn(�)− an(�))�(Mn · −�)

∥∥∥∥∥∥
p

�(C4 + C5)(m
−1/s)n�.

We complete the proof of Theorem2.9. �

Remark 2.10. Under assumptions that initial vector of function� satisfies Strang-Fix con-
ditions of orderk, we give a characterization of convergence rates of cascade algorithm in
(Lp(R

s))r (1�p�∞). It follows from Lemma2.8 that the assumptions on� to satisfyT��(2��)
= 0 for all� ∈ Zs\{0} and all|�|�k−1 are necessary.Whenr = 1, the conditionsT��(2��) = 0

for all � ∈ Zs\{0} and all|�|�k − 1 are reduced toD��̂(2��) = 0 for all � ∈ Zs\{0} and all
|�|�k − 1. We note that Theorem 2.9 appeared also in [29] forM = 2.

3. Characterization ofLp smoothness of a refinable function

In this section, we will investigate the smoothness of solution of refinement equations (1.1)
with M = qIs×s , whereq�2 is an integer. We give a characterization for the smoothness of a
refinable function in terms of the corresponding refinement maska and dilation matrixqIs×s .
The proof of our result is based on following theorem.
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Theorem 3.1. Let � > 0 and k be a positive integer. Letq�2 be an integer. If� ∈ (Lip∗
(�, Lp(Rs)))r andk > �, then there exists a constantC6 > 0 such that

‖∇k
q−nej�‖p�C6q

−n� ∀1�j�s, n ∈ N. (3.1)

Conversely,if � ∈ (Lp(R
s))r (1�p�∞) satisfies the conditions in(3.1), then� ∈ (Lip∗

(�, Lp(Rs)))r .

Proof. Weonly need to prove this theorem forr = 1.We follow the line of[4]. The proof is based
on following results from Ditzian [2,3]: for a function� in Lp(R) for 1�p�∞ (� is continuous
in the casep = ∞), � lies in Lip*(�, Lp(R)) for � > 0 if and only if, for some integerk > �,
there exists a constantC6 > 0 such that

‖∇k
q−n�‖p�C6q

−n� ∀1�j�s, n ∈ N. (3.2)

If inequality (3.1) holds true forr = 1, we pickh to be a function such that‖h‖p′ �1, where
1
p

+ 1
p

′ = 1. Defineh1 to be the convolution of� andh, i.e.,

h1(x) :=
∫

Rs
�(x − t)h(t) dt, x ∈ Rs .

It is easily seen thath1 is continuous and bounded. It follows from (3.1) that forj = 1,2, . . . , s,

‖∇k
q−nej h1‖∞ = ‖(∇k

q−nej�) ∗ h‖∞ �‖∇k
q−nej�‖p‖h‖p′ �C6q

−n� ∀n ∈ N.

Hence, we have

|∇k
q−nej h1(tej )|�C6q

−n� ∀t ∈ R, n ∈ N.

By (3.2), we know that there exists a positive constantC7 independent ofh such that

|∇k�ej h1(tej )|�C7�
� ∀t ∈ R, � > 0. (3.3)

It follows from inequality (3.3) that for any functionhwith ‖h‖p′ �1, we have

|∇k�ej h1(0)| = |(∇k�ej�) ∗ h(0)|�C7�
�, j = 1, . . . , s ∀� > 0.

Therefore,

‖∇k�ej�‖p = sup
‖h‖p′ �1

∣∣∣∣
∫

Rs
(∇k�ej�)(−x)h(x) dx

∣∣∣∣ �C7�
�, j = 1, . . . , s, � > 0.

Following [2], we know that� ∈ Lip∗(�, Lp(Rs)). If � ∈ Lip∗(�, Lp(Rs)), by the definition of
Lipschitz spaceLip∗(�, Lp(R)), there exists a positive constantC8 such that

‖∇k
q−nej�‖p�C8q

−n� ∀1�j�s, n ∈ N.

We complete the proof of Theorem3.1. �
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By using some methods similar to[11,18], we obtain

Lemma 3.2. Let� = (�1, . . . ,�r )
T ∈ (Lp(Rs))r (1�p�∞) be a compactly supported solu-

tion of the refinement equation(1.1)with mask a and dilation matrixM = qIs×s , whereq�2 is
an integer. Letan be defined by(1.10).If there exists a constantC9 such that forj = 1, . . . , s

‖∇kj an‖p�C9q
(s/2−�)n ∀n ∈ N, (3.4)

then� ∈ (Lip∗(�, Lp(Rs)))r . Conversely,if � ∈ (Lip∗(�, Lp(Rs)))r for 1�p�∞ andk > �,
then(3.4)holds true,provided that the shifts of�1, . . . ,�r are stable.

We will use thep-norm joint spectral radius of a finite collection of some linear operators
restricted to a certain finite dimensional common invariant subspace to characterize the critical
exponent�p(�) of a vector refinement function�. Let us review some notations ofp-norm joint
spectral radius from[9]. Let A be a finite collection of some linear operators on(�0(Zs))r . For a
positive integernwe denote byAn the Cartesian power ofA:

An = {(A1, . . . , An) : A1, . . . , An ∈ A}.
Whenn = 0, we interpretA0 as the set{I }, whereI is the identity mapping.
Let

‖An‖∞ := max{‖A1 · · ·An‖ : (A1, . . . , An) ∈ An}.
Then the uniform joint spectral radius ofA is defined to be

�∞(A) := lim
n→∞ ‖An‖1/n∞ . (3.5)

Thep-norm joint spectral radius ofA is defined to be

�p(A) = lim
n→∞ ‖An‖1/np . (3.6)

Let a be an element of(�0(Zs))r × r. For ε ∈ {�j , j = 0, 1, . . . , qs − 1}, where{�j , j =
0, 1, . . . , qs − 1} be theqs distinct elements of coset spacesZs/qZs with �0 = 0. We denote
E = {�k, k = 0, 1, . . . , qs−1}. Thus, each element� ∈ Zs can be uniquely represented asε+q�,
whereε ∈ E and� ∈ Zs . For ε ∈ E, anda ∈ (�0(Zs))r×r , we define the linear operatorsAε on
(�0(Z

s))r as

Aεu(�) :=
∑
�∈Zs

a(ε + q� − �)u(�), � ∈ Zs , u ∈ (�0(Zs))r . (3.7)

Following almost word for word the consideration of the proof of Lemma3.3 in [18], we have

Lemma 3.3. Let a be an element of(�0(Zs))r×r , and letan(n = 1,2, . . .) be given by(1.10)
withM = qIs×s ,whereq�2 is an integer. Forε ∈ E, letAε be the linear operator on(�0(Zs))r
defined by(3.7).LetA = {Aε; ε ∈ E}. Then,we have fork�0,

lim
n→∞ ‖∇kj an‖1/np = �p(A|V ),

where V is the minimal common invariant subspace ofA generated byel(�kj�), 1�j�s,
1� l�r.
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By using same method as the proof of Theorem 3.3 in[18], we can obtain main result of this
section. The proof of theorem is omitted.

Theorem 3.4. Let� = (�1, . . . ,�r )
T be the compactly supportedLp-solution of Eq.(1.1)with

a ∈ (�0(Z
s))r×r andM = qIs×s , whereq�2 is an integer. Forε ∈ E, let Aε be the linear

operator on(�0(Zs))r defined by(3.7).LetA = {Aε; ε ∈ E}, k be a positive integer and V be
minimal common invariant subspace ofA generated byel(�kj�), 1�j�s, 1� l�r. Then

�p(�)�1/p− 1

s
logq�p(A|V ), (3.8)

in addition,if the shifts of�1, . . . ,�r are stable and ifk > 1/p− 1
s
logq�p(A|V ), then equality

(3.8)holds.

Remark 3.5. Theorem3.4 was established in [18] for the cases = 1 andM = 2. In [15], Jia
et al. gave a complete characterization for the smoothness of theLp-solution of Eq. (1.1) without
assuming stability whens = 1,M = 2 and 1�p�∞. Whenr = 1 and 1< p < ∞, the
smoothness of refinable distributions was characterized in [27,28] fors = 1 and also in [24,29]
forM = 2Is×s .
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